The apparent charge of nanoparticles trapped at a water interface.
نویسندگان
چکیده
Charged spherical nanoparticles trapped at the interface between water and air or water and oil exhibit repulsive electrostatic forces that contain a long-ranged dipolar and a short-ranged exponentially decaying component. The former are induced by the unscreened electrostatic field through the non-polar low-permittivity medium, and the latter result from the overlap of the diffuse ion clouds that form in the aqueous phase close to the nanoparticles. The magnitude of the long-ranged dipolar interaction is largely determined by the residual charges that remain attached to the air- (or oil-) exposed region of the nanoparticle. In the present work we address the question to what extent the charges on the water-immersed part of the nanoparticle provide an additional contribution to the dipolar interaction. To this end, we model the electrostatic properties of a spherical particle - a nanoparticle or a colloid - that partitions equatorially to the air-water interface, thereby employing nonlinear Poisson-Boltzmann theory in the aqueous solution and accounting for the propagation of the electric field through the interior of the particle. We demonstrate that the apparent charge density on the air-exposed region of the particle, which determines the dipole potential, is influenced by the electrostatic properties in the aqueous solution. We also show that this electrostatic coupling through the particle can be reproduced qualitatively by a simple analytic planar capacitor model. Our results help to rationalize the experimentally observed weak but non-vanishing salt dependence of the forces that stabilize ordered two-dimensional arrays of interface-trapped nanoparticles or colloids.
منابع مشابه
Controlled assembly of Janus nanoparticles.
Janus nanoparticles were prepared by interfacial ligand exchange reactions of octanethiolate-protected gold (AuC8) nanoparticles with 3-mercapto-1,2-propanediol (MPD) at the air/water interface. AFM and TEM measurements showed that the resulting particles formed stable aggregates in water with dimensions up to a few hundred nanometers, in sharp contrast to the original AuC8 particles and bulk-e...
متن کاملInfluence of surface conductivity on the apparent zeta potential of TiO2 nanoparticles.
Zeta potential is a physico-chemical parameter of particular importance in describing ion adsorption and electrostatic interactions between charged particles. Nevertheless, this fundamental parameter is ill-constrained, because its experimental interpretation is complex, particularly for very small and charged TiO(2) nanoparticles. The excess of electrical charge at the interface is responsible...
متن کاملInfluence of surface conductivity on the apparent zeta potential of amorphous silica nanoparticles.
Zeta potential is a physicochemical parameter of particular importance in describing ion adsorption and double layer interactions between charged particles. However, for metal-oxide nanoparticles, the conversion of electrophoretic mobility measurements into zeta potentials is difficult. This is due to their very high surface electrical conductivity, which is inversely proportional to the size o...
متن کاملScreened electrostatics of charged particles on a water droplet.
We study the electrostatic properties of charged particles trapped at an interface in a water-in-oil microemulsion. The electrostatic potential and the counterion distribution in the water droplet are given in terms of the ratio of the Debye screening length kappa(-1) and the droplet radius R. In the limit R-->infinity we recover the well-known results for a flat interface. Finite-size correcti...
متن کاملApplication of Au@SiO2 Plasmonic Nanoparticles at Interface of TiO2 Mesoporous Layers in Perovskite Solar Cells
To investigate the plasmonic effect in perovskite solar cells, the effect of depositing Au@SiO2 nanoparticles on the top and the bottom of mesoporous TiO2 layers was studied. First, Au@SiO2 nanoparticles were synthesized. The particles were then deposited at the different interfaces of mesoporous TiO2 layers. Although the two structures show approximately similar optical absorption, only cells ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Soft matter
دوره 12 18 شماره
صفحات -
تاریخ انتشار 2016